| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-his2 |
|- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( ( B +h C ) .ih A ) = ( ( B .ih A ) + ( C .ih A ) ) ) |
| 2 |
1
|
fveq2d |
|- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) ) |
| 3 |
|
hicl |
|- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) e. CC ) |
| 4 |
|
hicl |
|- ( ( C e. ~H /\ A e. ~H ) -> ( C .ih A ) e. CC ) |
| 5 |
|
cjadd |
|- ( ( ( B .ih A ) e. CC /\ ( C .ih A ) e. CC ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( ( B e. ~H /\ A e. ~H ) /\ ( C e. ~H /\ A e. ~H ) ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 7 |
6
|
3impdir |
|- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 8 |
2 7
|
eqtrd |
|- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 9 |
8
|
3comr |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 10 |
|
hvaddcl |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) e. ~H ) |
| 11 |
|
ax-his1 |
|- ( ( A e. ~H /\ ( B +h C ) e. ~H ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
| 12 |
10 11
|
sylan2 |
|- ( ( A e. ~H /\ ( B e. ~H /\ C e. ~H ) ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
| 13 |
12
|
3impb |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
| 14 |
|
ax-his1 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
| 15 |
14
|
3adant3 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
| 16 |
|
ax-his1 |
|- ( ( A e. ~H /\ C e. ~H ) -> ( A .ih C ) = ( * ` ( C .ih A ) ) ) |
| 17 |
16
|
3adant2 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih C ) = ( * ` ( C .ih A ) ) ) |
| 18 |
15 17
|
oveq12d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih B ) + ( A .ih C ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 19 |
9 13 18
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih ( B +h C ) ) = ( ( A .ih B ) + ( A .ih C ) ) ) |