Metamath Proof Explorer


Theorem hl0cl

Description: The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hl0cl.1
|- X = ( BaseSet ` U )
hl0cl.5
|- Z = ( 0vec ` U )
Assertion hl0cl
|- ( U e. CHilOLD -> Z e. X )

Proof

Step Hyp Ref Expression
1 hl0cl.1
 |-  X = ( BaseSet ` U )
2 hl0cl.5
 |-  Z = ( 0vec ` U )
3 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
4 1 2 nvzcl
 |-  ( U e. NrmCVec -> Z e. X )
5 3 4 syl
 |-  ( U e. CHilOLD -> Z e. X )