| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hl0lt1.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							hl0lt1.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							hl0lt1.u | 
							 |-  .1. = ( 1. ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 5 | 
							
								4 1 2 3
							 | 
							hlhgt2 | 
							 |-  ( K e. HL -> E. x e. ( Base ` K ) ( .0. .< x /\ x .< .1. ) )  | 
						
						
							| 6 | 
							
								
							 | 
							hlpos | 
							 |-  ( K e. HL -> K e. Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> K e. Poset )  | 
						
						
							| 8 | 
							
								
							 | 
							hlop | 
							 |-  ( K e. HL -> K e. OP )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> K e. OP )  | 
						
						
							| 10 | 
							
								4 2
							 | 
							op0cl | 
							 |-  ( K e. OP -> .0. e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> .0. e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> x e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								4 3
							 | 
							op1cl | 
							 |-  ( K e. OP -> .1. e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							syl | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> .1. e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								4 1
							 | 
							plttr | 
							 |-  ( ( K e. Poset /\ ( .0. e. ( Base ` K ) /\ x e. ( Base ` K ) /\ .1. e. ( Base ` K ) ) ) -> ( ( .0. .< x /\ x .< .1. ) -> .0. .< .1. ) )  | 
						
						
							| 16 | 
							
								7 11 12 14 15
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ x e. ( Base ` K ) ) -> ( ( .0. .< x /\ x .< .1. ) -> .0. .< .1. ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rexlimdva | 
							 |-  ( K e. HL -> ( E. x e. ( Base ` K ) ( .0. .< x /\ x .< .1. ) -> .0. .< .1. ) )  | 
						
						
							| 18 | 
							
								5 17
							 | 
							mpd | 
							 |-  ( K e. HL -> .0. .< .1. )  |