Metamath Proof Explorer


Theorem hladdf

Description: Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1
|- X = ( BaseSet ` U )
hladdf.2
|- G = ( +v ` U )
Assertion hladdf
|- ( U e. CHilOLD -> G : ( X X. X ) --> X )

Proof

Step Hyp Ref Expression
1 hladdf.1
 |-  X = ( BaseSet ` U )
2 hladdf.2
 |-  G = ( +v ` U )
3 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
4 1 2 nvgf
 |-  ( U e. NrmCVec -> G : ( X X. X ) --> X )
5 3 4 syl
 |-  ( U e. CHilOLD -> G : ( X X. X ) --> X )