Metamath Proof Explorer


Theorem hlass

Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1
|- X = ( BaseSet ` U )
hladdf.2
|- G = ( +v ` U )
Assertion hlass
|- ( ( U e. CHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) )

Proof

Step Hyp Ref Expression
1 hladdf.1
 |-  X = ( BaseSet ` U )
2 hladdf.2
 |-  G = ( +v ` U )
3 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
4 1 2 nvass
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) )
5 3 4 sylan
 |-  ( ( U e. CHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) )