Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlatjcom.j | |- .\/ = ( join ` K ) |
|
hlatjcom.a | |- A = ( Atoms ` K ) |
||
Assertion | hlatjcom | |- ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatjcom.j | |- .\/ = ( join ` K ) |
|
2 | hlatjcom.a | |- A = ( Atoms ` K ) |
|
3 | hllat | |- ( K e. HL -> K e. Lat ) |
|
4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
5 | 4 2 | atbase | |- ( X e. A -> X e. ( Base ` K ) ) |
6 | 4 2 | atbase | |- ( Y e. A -> Y e. ( Base ` K ) ) |
7 | 4 1 | latjcom | |- ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
8 | 3 5 6 7 | syl3an | |- ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |