Metamath Proof Explorer


Theorem hlatjcom

Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcom.j
|- .\/ = ( join ` K )
hlatjcom.a
|- A = ( Atoms ` K )
Assertion hlatjcom
|- ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) = ( Y .\/ X ) )

Proof

Step Hyp Ref Expression
1 hlatjcom.j
 |-  .\/ = ( join ` K )
2 hlatjcom.a
 |-  A = ( Atoms ` K )
3 hllat
 |-  ( K e. HL -> K e. Lat )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 2 atbase
 |-  ( X e. A -> X e. ( Base ` K ) )
6 4 2 atbase
 |-  ( Y e. A -> Y e. ( Base ` K ) )
7 4 1 latjcom
 |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X .\/ Y ) = ( Y .\/ X ) )
8 3 5 6 7 syl3an
 |-  ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) = ( Y .\/ X ) )