Metamath Proof Explorer


Theorem hlatle

Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses hlatle.b
|- B = ( Base ` K )
hlatle.l
|- .<_ = ( le ` K )
hlatle.a
|- A = ( Atoms ` K )
Assertion hlatle
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> A. p e. A ( p .<_ X -> p .<_ Y ) ) )

Proof

Step Hyp Ref Expression
1 hlatle.b
 |-  B = ( Base ` K )
2 hlatle.l
 |-  .<_ = ( le ` K )
3 hlatle.a
 |-  A = ( Atoms ` K )
4 hlomcmat
 |-  ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. AtLat ) )
5 1 2 3 atlatle
 |-  ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> A. p e. A ( p .<_ X -> p .<_ Y ) ) )
6 4 5 syl3an1
 |-  ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> A. p e. A ( p .<_ X -> p .<_ Y ) ) )