Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlbn | |- ( W e. CHil -> W e. Ban ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishl | |- ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) | |
| 2 | 1 | simplbi | |- ( W e. CHil -> W e. Ban ) |