Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
8 |
|
hltr.d |
|- ( ph -> D e. P ) |
9 |
|
hlbtwn.1 |
|- ( ph -> D e. ( C I B ) ) |
10 |
|
hlbtwn.2 |
|- ( ph -> B =/= C ) |
11 |
|
hlbtwn.3 |
|- ( ph -> D =/= C ) |
12 |
10 11
|
2thd |
|- ( ph -> ( B =/= C <-> D =/= C ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) |
14 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C e. P ) |
15 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. P ) |
16 |
8
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> D e. P ) |
17 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> B e. P ) |
18 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
19 |
9
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> D e. ( C I B ) ) |
20 |
1 2 13 14 15 16 17 18 19
|
tgbtwnconn3 |
|- ( ( ph /\ A e. ( C I B ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
21 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
22 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
23 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
24 |
8
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. P ) |
25 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
26 |
4
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
27 |
9
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. ( C I B ) ) |
28 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
29 |
1 21 2 22 23 24 25 26 27 28
|
tgbtwnexch |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. ( C I A ) ) |
30 |
29
|
olcd |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
31 |
20 30
|
jaodan |
|- ( ( ph /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
32 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> G e. TarskiG ) |
33 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> C e. P ) |
34 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. P ) |
35 |
8
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> D e. P ) |
36 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> B e. P ) |
37 |
|
simpr |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. ( C I D ) ) |
38 |
9
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> D e. ( C I B ) ) |
39 |
1 21 2 32 33 34 35 36 37 38
|
tgbtwnexch |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. ( C I B ) ) |
40 |
39
|
orcd |
|- ( ( ph /\ A e. ( C I D ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
41 |
7
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> G e. TarskiG ) |
42 |
6
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> C e. P ) |
43 |
8
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. P ) |
44 |
4
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> A e. P ) |
45 |
5
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> B e. P ) |
46 |
11
|
necomd |
|- ( ph -> C =/= D ) |
47 |
46
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> C =/= D ) |
48 |
|
simpr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. ( C I A ) ) |
49 |
9
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. ( C I B ) ) |
50 |
1 2 41 42 43 44 45 47 48 49
|
tgbtwnconn1 |
|- ( ( ph /\ D e. ( C I A ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
51 |
40 50
|
jaodan |
|- ( ( ph /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
52 |
31 51
|
impbida |
|- ( ph -> ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) |
53 |
12 52
|
3anbi23d |
|- ( ph -> ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( A =/= C /\ D =/= C /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) ) |
54 |
1 2 3 4 5 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
55 |
1 2 3 4 8 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) D <-> ( A =/= C /\ D =/= C /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) ) |
56 |
53 54 55
|
3bitr4d |
|- ( ph -> ( A ( K ` C ) B <-> A ( K ` C ) D ) ) |