| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hltr.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							hlcgrex.m | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 10 | 
							
								
							 | 
							hlcgrex.1 | 
							 |-  ( ph -> D =/= A )  | 
						
						
							| 11 | 
							
								
							 | 
							hlcgrex.2 | 
							 |-  ( ph -> B =/= C )  | 
						
						
							| 12 | 
							
								
							 | 
							hlcgreulem.x | 
							 |-  ( ph -> X e. P )  | 
						
						
							| 13 | 
							
								
							 | 
							hlcgreulem.y | 
							 |-  ( ph -> Y e. P )  | 
						
						
							| 14 | 
							
								
							 | 
							hlcgreulem.1 | 
							 |-  ( ph -> X ( K ` A ) D )  | 
						
						
							| 15 | 
							
								
							 | 
							hlcgreulem.2 | 
							 |-  ( ph -> Y ( K ` A ) D )  | 
						
						
							| 16 | 
							
								
							 | 
							hlcgreulem.3 | 
							 |-  ( ph -> ( A .- X ) = ( B .- C ) )  | 
						
						
							| 17 | 
							
								
							 | 
							hlcgreulem.4 | 
							 |-  ( ph -> ( A .- Y ) = ( B .- C ) )  | 
						
						
							| 18 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> G e. TarskiG )  | 
						
						
							| 19 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. P )  | 
						
						
							| 20 | 
							
								5
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> B e. P )  | 
						
						
							| 21 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> C e. P )  | 
						
						
							| 22 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> y e. P )  | 
						
						
							| 23 | 
							
								12
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> X e. P )  | 
						
						
							| 24 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> Y e. P )  | 
						
						
							| 25 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A =/= y )  | 
						
						
							| 26 | 
							
								25
							 | 
							necomd | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> y =/= A )  | 
						
						
							| 27 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> D e. P )  | 
						
						
							| 28 | 
							
								1 2 3 12 8 4 7 14
							 | 
							hlcomd | 
							 |-  ( ph -> D ( K ` A ) X )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> D ( K ` A ) X )  | 
						
						
							| 30 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. ( D I y ) )  | 
						
						
							| 31 | 
							
								1 2 3 27 23 22 18 19 29 30
							 | 
							btwnhl | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. ( X I y ) )  | 
						
						
							| 32 | 
							
								1 9 2 18 23 19 22 31
							 | 
							tgbtwncom | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. ( y I X ) )  | 
						
						
							| 33 | 
							
								1 2 3 13 8 4 7 15
							 | 
							hlcomd | 
							 |-  ( ph -> D ( K ` A ) Y )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> D ( K ` A ) Y )  | 
						
						
							| 35 | 
							
								1 2 3 27 24 22 18 19 34 30
							 | 
							btwnhl | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. ( Y I y ) )  | 
						
						
							| 36 | 
							
								1 9 2 18 24 19 22 35
							 | 
							tgbtwncom | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> A e. ( y I Y ) )  | 
						
						
							| 37 | 
							
								16
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> ( A .- X ) = ( B .- C ) )  | 
						
						
							| 38 | 
							
								17
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> ( A .- Y ) = ( B .- C ) )  | 
						
						
							| 39 | 
							
								1 9 2 18 19 20 21 22 23 24 26 32 36 37 38
							 | 
							tgsegconeq | 
							 |-  ( ( ( ph /\ y e. P ) /\ ( A e. ( D I y ) /\ A =/= y ) ) -> X = Y )  | 
						
						
							| 40 | 
							
								1
							 | 
							fvexi | 
							 |-  P e. _V  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( ph -> P e. _V )  | 
						
						
							| 42 | 
							
								41 5 6 11
							 | 
							nehash2 | 
							 |-  ( ph -> 2 <_ ( # ` P ) )  | 
						
						
							| 43 | 
							
								1 9 2 7 8 4 42
							 | 
							tgbtwndiff | 
							 |-  ( ph -> E. y e. P ( A e. ( D I y ) /\ A =/= y ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							r19.29a | 
							 |-  ( ph -> X = Y )  |