Metamath Proof Explorer


Theorem hlclat

Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlclat
|- ( K e. HL -> K e. CLat )

Proof

Step Hyp Ref Expression
1 hlomcmcv
 |-  ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) )
2 1 simp2d
 |-  ( K e. HL -> K e. CLat )