Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlcmet.x | |- X = ( BaseSet ` U ) |
|
hlcmet.8 | |- D = ( IndMet ` U ) |
||
Assertion | hlcmet | |- ( U e. CHilOLD -> D e. ( CMet ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcmet.x | |- X = ( BaseSet ` U ) |
|
2 | hlcmet.8 | |- D = ( IndMet ` U ) |
|
3 | hlobn | |- ( U e. CHilOLD -> U e. CBan ) |
|
4 | 1 2 | cbncms | |- ( U e. CBan -> D e. ( CMet ` X ) ) |
5 | 3 4 | syl | |- ( U e. CHilOLD -> D e. ( CMet ` X ) ) |