Metamath Proof Explorer


Theorem hlcmet

Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x
|- X = ( BaseSet ` U )
hlcmet.8
|- D = ( IndMet ` U )
Assertion hlcmet
|- ( U e. CHilOLD -> D e. ( CMet ` X ) )

Proof

Step Hyp Ref Expression
1 hlcmet.x
 |-  X = ( BaseSet ` U )
2 hlcmet.8
 |-  D = ( IndMet ` U )
3 hlobn
 |-  ( U e. CHilOLD -> U e. CBan )
4 1 2 cbncms
 |-  ( U e. CBan -> D e. ( CMet ` X ) )
5 3 4 syl
 |-  ( U e. CHilOLD -> D e. ( CMet ` X ) )