Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
ishlg.g |
|- ( ph -> G e. V ) |
8 |
|
3ancoma |
|- ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) |
9 |
|
orcom |
|- ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( B e. ( C I A ) \/ A e. ( C I B ) ) ) |
10 |
9
|
a1i |
|- ( ph -> ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) |
11 |
10
|
3anbi3d |
|- ( ph -> ( ( B =/= C /\ A =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
12 |
8 11
|
syl5bb |
|- ( ph -> ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
13 |
1 2 3 4 5 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
14 |
1 2 3 5 4 6 7
|
ishlg |
|- ( ph -> ( B ( K ` C ) A <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
15 |
12 13 14
|
3bitr4d |
|- ( ph -> ( A ( K ` C ) B <-> B ( K ` C ) A ) ) |