Description: The half-line relation commutes. Theorem 6.6 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishlg.p | |- P = ( Base ` G )  | 
					|
| ishlg.i | |- I = ( Itv ` G )  | 
					||
| ishlg.k | |- K = ( hlG ` G )  | 
					||
| ishlg.a | |- ( ph -> A e. P )  | 
					||
| ishlg.b | |- ( ph -> B e. P )  | 
					||
| ishlg.c | |- ( ph -> C e. P )  | 
					||
| ishlg.g | |- ( ph -> G e. V )  | 
					||
| hlcomd.1 | |- ( ph -> A ( K ` C ) B )  | 
					||
| Assertion | hlcomd | |- ( ph -> B ( K ` C ) A )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishlg.p | |- P = ( Base ` G )  | 
						|
| 2 | ishlg.i | |- I = ( Itv ` G )  | 
						|
| 3 | ishlg.k | |- K = ( hlG ` G )  | 
						|
| 4 | ishlg.a | |- ( ph -> A e. P )  | 
						|
| 5 | ishlg.b | |- ( ph -> B e. P )  | 
						|
| 6 | ishlg.c | |- ( ph -> C e. P )  | 
						|
| 7 | ishlg.g | |- ( ph -> G e. V )  | 
						|
| 8 | hlcomd.1 | |- ( ph -> A ( K ` C ) B )  | 
						|
| 9 | 1 2 3 4 5 6 7 | hlcomb | |- ( ph -> ( A ( K ` C ) B <-> B ( K ` C ) A ) )  | 
						
| 10 | 8 9 | mpbid | |- ( ph -> B ( K ` C ) A )  |