Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlcph | |- ( W e. CHil -> W e. CPreHil ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishl | |- ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) | |
| 2 | 1 | simprbi | |- ( W e. CHil -> W e. CPreHil ) |