Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hlcph | |- ( W e. CHil -> W e. CPreHil ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl | |- ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) |
|
2 | 1 | simprbi | |- ( W e. CHil -> W e. CPreHil ) |