Metamath Proof Explorer


Theorem hlid

Description: The half-line relation is reflexive. Theorem 6.5 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses ishlg.p
|- P = ( Base ` G )
ishlg.i
|- I = ( Itv ` G )
ishlg.k
|- K = ( hlG ` G )
ishlg.a
|- ( ph -> A e. P )
ishlg.b
|- ( ph -> B e. P )
ishlg.c
|- ( ph -> C e. P )
hlln.1
|- ( ph -> G e. TarskiG )
hlid.1
|- ( ph -> A =/= C )
Assertion hlid
|- ( ph -> A ( K ` C ) A )

Proof

Step Hyp Ref Expression
1 ishlg.p
 |-  P = ( Base ` G )
2 ishlg.i
 |-  I = ( Itv ` G )
3 ishlg.k
 |-  K = ( hlG ` G )
4 ishlg.a
 |-  ( ph -> A e. P )
5 ishlg.b
 |-  ( ph -> B e. P )
6 ishlg.c
 |-  ( ph -> C e. P )
7 hlln.1
 |-  ( ph -> G e. TarskiG )
8 hlid.1
 |-  ( ph -> A =/= C )
9 eqid
 |-  ( dist ` G ) = ( dist ` G )
10 1 9 2 7 6 4 tgbtwntriv2
 |-  ( ph -> A e. ( C I A ) )
11 10 olcd
 |-  ( ph -> ( A e. ( C I A ) \/ A e. ( C I A ) ) )
12 1 2 3 4 4 6 7 ishlg
 |-  ( ph -> ( A ( K ` C ) A <-> ( A =/= C /\ A =/= C /\ ( A e. ( C I A ) \/ A e. ( C I A ) ) ) ) )
13 8 8 11 12 mpbir3and
 |-  ( ph -> A ( K ` C ) A )