Description: The half-line relation is reflexive. Theorem 6.5 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishlg.p | |- P = ( Base ` G ) |
|
ishlg.i | |- I = ( Itv ` G ) |
||
ishlg.k | |- K = ( hlG ` G ) |
||
ishlg.a | |- ( ph -> A e. P ) |
||
ishlg.b | |- ( ph -> B e. P ) |
||
ishlg.c | |- ( ph -> C e. P ) |
||
hlln.1 | |- ( ph -> G e. TarskiG ) |
||
hlid.1 | |- ( ph -> A =/= C ) |
||
Assertion | hlid | |- ( ph -> A ( K ` C ) A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | |- P = ( Base ` G ) |
|
2 | ishlg.i | |- I = ( Itv ` G ) |
|
3 | ishlg.k | |- K = ( hlG ` G ) |
|
4 | ishlg.a | |- ( ph -> A e. P ) |
|
5 | ishlg.b | |- ( ph -> B e. P ) |
|
6 | ishlg.c | |- ( ph -> C e. P ) |
|
7 | hlln.1 | |- ( ph -> G e. TarskiG ) |
|
8 | hlid.1 | |- ( ph -> A =/= C ) |
|
9 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
10 | 1 9 2 7 6 4 | tgbtwntriv2 | |- ( ph -> A e. ( C I A ) ) |
11 | 10 | olcd | |- ( ph -> ( A e. ( C I A ) \/ A e. ( C I A ) ) ) |
12 | 1 2 3 4 4 6 7 | ishlg | |- ( ph -> ( A ( K ` C ) A <-> ( A =/= C /\ A =/= C /\ ( A e. ( C I A ) \/ A e. ( C I A ) ) ) ) ) |
13 | 8 8 11 12 | mpbir3and | |- ( ph -> A ( K ` C ) A ) |