| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hlid.1 | 
							 |-  ( ph -> A =/= C )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( dist ` G ) = ( dist ` G )  | 
						
						
							| 10 | 
							
								1 9 2 7 6 4
							 | 
							tgbtwntriv2 | 
							 |-  ( ph -> A e. ( C I A ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							olcd | 
							 |-  ( ph -> ( A e. ( C I A ) \/ A e. ( C I A ) ) )  | 
						
						
							| 12 | 
							
								1 2 3 4 4 6 7
							 | 
							ishlg | 
							 |-  ( ph -> ( A ( K ` C ) A <-> ( A =/= C /\ A =/= C /\ ( A e. ( C I A ) \/ A e. ( C I A ) ) ) ) )  | 
						
						
							| 13 | 
							
								8 8 11 12
							 | 
							mpbir3and | 
							 |-  ( ph -> A ( K ` C ) A )  |