Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
|- 0h e. ~H |
2 |
1
|
fconst6 |
|- ( NN X. { 0h } ) : NN --> ~H |
3 |
|
ax-hilex |
|- ~H e. _V |
4 |
|
nnex |
|- NN e. _V |
5 |
3 4
|
elmap |
|- ( ( NN X. { 0h } ) e. ( ~H ^m NN ) <-> ( NN X. { 0h } ) : NN --> ~H ) |
6 |
2 5
|
mpbir |
|- ( NN X. { 0h } ) e. ( ~H ^m NN ) |
7 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
8 |
|
eqid |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
9 |
7 8
|
hhxmet |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
10 |
|
eqid |
|- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
11 |
10
|
mopntopon |
|- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) ) |
12 |
9 11
|
ax-mp |
|- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
15 |
14
|
lmconst |
|- ( ( ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) /\ 0h e. ~H /\ 1 e. ZZ ) -> ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) |
16 |
12 1 13 15
|
mp3an |
|- ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h |
17 |
7 8 10
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
18 |
17
|
breqi |
|- ( ( NN X. { 0h } ) ~~>v 0h <-> ( NN X. { 0h } ) ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) 0h ) |
19 |
1
|
elexi |
|- 0h e. _V |
20 |
19
|
brresi |
|- ( ( NN X. { 0h } ) ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) 0h <-> ( ( NN X. { 0h } ) e. ( ~H ^m NN ) /\ ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) ) |
21 |
18 20
|
bitri |
|- ( ( NN X. { 0h } ) ~~>v 0h <-> ( ( NN X. { 0h } ) e. ( ~H ^m NN ) /\ ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) ) |
22 |
6 16 21
|
mpbir2an |
|- ( NN X. { 0h } ) ~~>v 0h |