Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( w = A -> ( F ~~>v w <-> F ~~>v A ) ) |
2 |
|
oveq2 |
|- ( w = A -> ( ( F ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
3 |
2
|
fveq2d |
|- ( w = A -> ( normh ` ( ( F ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) |
4 |
3
|
breq1d |
|- ( w = A -> ( ( normh ` ( ( F ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
5 |
4
|
rexralbidv |
|- ( w = A -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
6 |
5
|
ralbidv |
|- ( w = A -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
7 |
1 6
|
bibi12d |
|- ( w = A -> ( ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) <-> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
8 |
7
|
imbi2d |
|- ( w = A -> ( ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) <-> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) ) |
9 |
|
vex |
|- w e. _V |
10 |
9
|
hlimi |
|- ( F ~~>v w <-> ( ( F : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) |
11 |
10
|
baib |
|- ( ( F : NN --> ~H /\ w e. ~H ) -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) |
12 |
11
|
expcom |
|- ( w e. ~H -> ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) ) |
13 |
8 12
|
vtoclga |
|- ( A e. ~H -> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
14 |
13
|
impcom |
|- ( ( F : NN --> ~H /\ A e. ~H ) -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |