Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
2 |
|
eqid |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
3 |
1 2
|
hhxmet |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
4 |
|
eqid |
|- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
5 |
4
|
methaus |
|- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. Haus ) |
6 |
|
lmfun |
|- ( ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. Haus -> Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
7 |
3 5 6
|
mp2b |
|- Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
8 |
|
funres |
|- ( Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) -> Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
9 |
7 8
|
ax-mp |
|- Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
10 |
1 2 4
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
11 |
10
|
funeqi |
|- ( Fun ~~>v <-> Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
12 |
9 11
|
mpbir |
|- Fun ~~>v |
13 |
|
funfn |
|- ( Fun ~~>v <-> ~~>v Fn dom ~~>v ) |
14 |
12 13
|
mpbi |
|- ~~>v Fn dom ~~>v |
15 |
|
funfvbrb |
|- ( Fun ~~>v -> ( x e. dom ~~>v <-> x ~~>v ( ~~>v ` x ) ) ) |
16 |
12 15
|
ax-mp |
|- ( x e. dom ~~>v <-> x ~~>v ( ~~>v ` x ) ) |
17 |
|
fvex |
|- ( ~~>v ` x ) e. _V |
18 |
17
|
hlimveci |
|- ( x ~~>v ( ~~>v ` x ) -> ( ~~>v ` x ) e. ~H ) |
19 |
16 18
|
sylbi |
|- ( x e. dom ~~>v -> ( ~~>v ` x ) e. ~H ) |
20 |
19
|
rgen |
|- A. x e. dom ~~>v ( ~~>v ` x ) e. ~H |
21 |
|
ffnfv |
|- ( ~~>v : dom ~~>v --> ~H <-> ( ~~>v Fn dom ~~>v /\ A. x e. dom ~~>v ( ~~>v ` x ) e. ~H ) ) |
22 |
14 20 21
|
mpbir2an |
|- ~~>v : dom ~~>v --> ~H |