| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlim.1 |  |-  A e. _V | 
						
							| 2 |  | df-hlim |  |-  ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } | 
						
							| 3 | 2 | relopabiv |  |-  Rel ~~>v | 
						
							| 4 | 3 | brrelex1i |  |-  ( F ~~>v A -> F e. _V ) | 
						
							| 5 |  | nnex |  |-  NN e. _V | 
						
							| 6 |  | fex |  |-  ( ( F : NN --> ~H /\ NN e. _V ) -> F e. _V ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( F : NN --> ~H -> F e. _V ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) -> F e. _V ) | 
						
							| 9 |  | feq1 |  |-  ( f = F -> ( f : NN --> ~H <-> F : NN --> ~H ) ) | 
						
							| 10 |  | eleq1 |  |-  ( w = A -> ( w e. ~H <-> A e. ~H ) ) | 
						
							| 11 | 9 10 | bi2anan9 |  |-  ( ( f = F /\ w = A ) -> ( ( f : NN --> ~H /\ w e. ~H ) <-> ( F : NN --> ~H /\ A e. ~H ) ) ) | 
						
							| 12 |  | fveq1 |  |-  ( f = F -> ( f ` z ) = ( F ` z ) ) | 
						
							| 13 |  | oveq12 |  |-  ( ( ( f ` z ) = ( F ` z ) /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( f = F /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( f = F /\ w = A ) -> ( normh ` ( ( f ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) | 
						
							| 16 | 15 | breq1d |  |-  ( ( f = F /\ w = A ) -> ( ( normh ` ( ( f ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 17 | 16 | rexralbidv |  |-  ( ( f = F /\ w = A ) -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 18 | 17 | ralbidv |  |-  ( ( f = F /\ w = A ) -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 19 | 11 18 | anbi12d |  |-  ( ( f = F /\ w = A ) -> ( ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) | 
						
							| 20 | 19 2 | brabga |  |-  ( ( F e. _V /\ A e. _V ) -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) | 
						
							| 21 | 1 20 | mpan2 |  |-  ( F e. _V -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) | 
						
							| 22 | 4 8 21 | pm5.21nii |  |-  ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |