Description: A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | |- A e. _V | |
| Assertion | hlimseqi | |- ( F ~~>v A -> F : NN --> ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlim.1 | |- A e. _V | |
| 2 | 1 | hlimi | |- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
| 3 | 2 | simplbi | |- ( F ~~>v A -> ( F : NN --> ~H /\ A e. ~H ) ) | 
| 4 | 3 | simpld | |- ( F ~~>v A -> F : NN --> ~H ) |