Metamath Proof Explorer


Theorem hlipcj

Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1
|- X = ( BaseSet ` U )
hlipf.7
|- P = ( .iOLD ` U )
Assertion hlipcj
|- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( A P B ) = ( * ` ( B P A ) ) )

Proof

Step Hyp Ref Expression
1 hlipf.1
 |-  X = ( BaseSet ` U )
2 hlipf.7
 |-  P = ( .iOLD ` U )
3 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
4 1 2 dipcj
 |-  ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) )
5 3 4 syl3an1
 |-  ( ( U e. CHilOLD /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) )
6 5 3com23
 |-  ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( * ` ( B P A ) ) = ( A P B ) )
7 6 eqcomd
 |-  ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( A P B ) = ( * ` ( B P A ) ) )