Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlipf.1 | |- X = ( BaseSet ` U ) |
|
hlipf.7 | |- P = ( .iOLD ` U ) |
||
Assertion | hlipcj | |- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( A P B ) = ( * ` ( B P A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlipf.1 | |- X = ( BaseSet ` U ) |
|
2 | hlipf.7 | |- P = ( .iOLD ` U ) |
|
3 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) |
|
4 | 1 2 | dipcj | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
5 | 3 4 | syl3an1 | |- ( ( U e. CHilOLD /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
6 | 5 | 3com23 | |- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
7 | 6 | eqcomd | |- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( A P B ) = ( * ` ( B P A ) ) ) |