Metamath Proof Explorer


Theorem hlln

Description: The half-line relation implies colinearity, part of Theorem 6.4 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses ishlg.p
|- P = ( Base ` G )
ishlg.i
|- I = ( Itv ` G )
ishlg.k
|- K = ( hlG ` G )
ishlg.a
|- ( ph -> A e. P )
ishlg.b
|- ( ph -> B e. P )
ishlg.c
|- ( ph -> C e. P )
hlln.1
|- ( ph -> G e. TarskiG )
hlln.l
|- L = ( LineG ` G )
hlln.2
|- ( ph -> A ( K ` C ) B )
Assertion hlln
|- ( ph -> A e. ( B L C ) )

Proof

Step Hyp Ref Expression
1 ishlg.p
 |-  P = ( Base ` G )
2 ishlg.i
 |-  I = ( Itv ` G )
3 ishlg.k
 |-  K = ( hlG ` G )
4 ishlg.a
 |-  ( ph -> A e. P )
5 ishlg.b
 |-  ( ph -> B e. P )
6 ishlg.c
 |-  ( ph -> C e. P )
7 hlln.1
 |-  ( ph -> G e. TarskiG )
8 hlln.l
 |-  L = ( LineG ` G )
9 hlln.2
 |-  ( ph -> A ( K ` C ) B )
10 eqid
 |-  ( dist ` G ) = ( dist ` G )
11 7 adantr
 |-  ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG )
12 6 adantr
 |-  ( ( ph /\ A e. ( C I B ) ) -> C e. P )
13 4 adantr
 |-  ( ( ph /\ A e. ( C I B ) ) -> A e. P )
14 5 adantr
 |-  ( ( ph /\ A e. ( C I B ) ) -> B e. P )
15 simpr
 |-  ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) )
16 1 10 2 11 12 13 14 15 tgbtwncom
 |-  ( ( ph /\ A e. ( C I B ) ) -> A e. ( B I C ) )
17 16 3mix1d
 |-  ( ( ph /\ A e. ( C I B ) ) -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) )
18 7 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG )
19 6 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> C e. P )
20 5 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. P )
21 4 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> A e. P )
22 simpr
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) )
23 1 10 2 18 19 20 21 22 tgbtwncom
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) )
24 23 3mix2d
 |-  ( ( ph /\ B e. ( C I A ) ) -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) )
25 1 2 3 4 5 6 7 ishlg
 |-  ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) )
26 9 25 mpbid
 |-  ( ph -> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) )
27 26 simp3d
 |-  ( ph -> ( A e. ( C I B ) \/ B e. ( C I A ) ) )
28 17 24 27 mpjaodan
 |-  ( ph -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) )
29 26 simp2d
 |-  ( ph -> B =/= C )
30 1 8 2 7 5 6 29 4 tgellng
 |-  ( ph -> ( A e. ( B L C ) <-> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) ) )
31 28 30 mpbird
 |-  ( ph -> A e. ( B L C ) )