Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
8 |
|
hlln.l |
|- L = ( LineG ` G ) |
9 |
|
hlln.2 |
|- ( ph -> A ( K ` C ) B ) |
10 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
11 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) |
12 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C e. P ) |
13 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. P ) |
14 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> B e. P ) |
15 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
16 |
1 10 2 11 12 13 14 15
|
tgbtwncom |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( B I C ) ) |
17 |
16
|
3mix1d |
|- ( ( ph /\ A e. ( C I B ) ) -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) ) |
18 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
19 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
20 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
21 |
4
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
22 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
23 |
1 10 2 18 19 20 21 22
|
tgbtwncom |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) ) |
24 |
23
|
3mix2d |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) ) |
25 |
1 2 3 4 5 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
26 |
9 25
|
mpbid |
|- ( ph -> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) |
27 |
26
|
simp3d |
|- ( ph -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
28 |
17 24 27
|
mpjaodan |
|- ( ph -> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) ) |
29 |
26
|
simp2d |
|- ( ph -> B =/= C ) |
30 |
1 8 2 7 5 6 29 4
|
tgellng |
|- ( ph -> ( A e. ( B L C ) <-> ( A e. ( B I C ) \/ B e. ( A I C ) \/ C e. ( B I A ) ) ) ) |
31 |
28 30
|
mpbird |
|- ( ph -> A e. ( B L C ) ) |