Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlcmet.x | |- X = ( BaseSet ` U ) | |
| hlcmet.8 | |- D = ( IndMet ` U ) | ||
| Assertion | hlmet | |- ( U e. CHilOLD -> D e. ( Met ` X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlcmet.x | |- X = ( BaseSet ` U ) | |
| 2 | hlcmet.8 | |- D = ( IndMet ` U ) | |
| 3 | 1 2 | hlcmet | |- ( U e. CHilOLD -> D e. ( CMet ` X ) ) | 
| 4 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | |
| 5 | 3 4 | syl | |- ( U e. CHilOLD -> D e. ( Met ` X ) ) |