Metamath Proof Explorer


Theorem hlmet

Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x
|- X = ( BaseSet ` U )
hlcmet.8
|- D = ( IndMet ` U )
Assertion hlmet
|- ( U e. CHilOLD -> D e. ( Met ` X ) )

Proof

Step Hyp Ref Expression
1 hlcmet.x
 |-  X = ( BaseSet ` U )
2 hlcmet.8
 |-  D = ( IndMet ` U )
3 1 2 hlcmet
 |-  ( U e. CHilOLD -> D e. ( CMet ` X ) )
4 cmetmet
 |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) )
5 3 4 syl
 |-  ( U e. CHilOLD -> D e. ( Met ` X ) )