Metamath Proof Explorer


Theorem hlmulf

Description: Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1
|- X = ( BaseSet ` U )
hlmulf.4
|- S = ( .sOLD ` U )
Assertion hlmulf
|- ( U e. CHilOLD -> S : ( CC X. X ) --> X )

Proof

Step Hyp Ref Expression
1 hlmulf.1
 |-  X = ( BaseSet ` U )
2 hlmulf.4
 |-  S = ( .sOLD ` U )
3 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
4 1 2 nvsf
 |-  ( U e. NrmCVec -> S : ( CC X. X ) --> X )
5 3 4 syl
 |-  ( U e. CHilOLD -> S : ( CC X. X ) --> X )