Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishlg.p | |- P = ( Base ` G )  | 
					|
| ishlg.i | |- I = ( Itv ` G )  | 
					||
| ishlg.k | |- K = ( hlG ` G )  | 
					||
| ishlg.a | |- ( ph -> A e. P )  | 
					||
| ishlg.b | |- ( ph -> B e. P )  | 
					||
| ishlg.c | |- ( ph -> C e. P )  | 
					||
| ishlg.g | |- ( ph -> G e. V )  | 
					||
| hlcomd.1 | |- ( ph -> A ( K ` C ) B )  | 
					||
| Assertion | hlne2 | |- ( ph -> B =/= C )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishlg.p | |- P = ( Base ` G )  | 
						|
| 2 | ishlg.i | |- I = ( Itv ` G )  | 
						|
| 3 | ishlg.k | |- K = ( hlG ` G )  | 
						|
| 4 | ishlg.a | |- ( ph -> A e. P )  | 
						|
| 5 | ishlg.b | |- ( ph -> B e. P )  | 
						|
| 6 | ishlg.c | |- ( ph -> C e. P )  | 
						|
| 7 | ishlg.g | |- ( ph -> G e. V )  | 
						|
| 8 | hlcomd.1 | |- ( ph -> A ( K ` C ) B )  | 
						|
| 9 | 1 2 3 4 5 6 7 | ishlg | |- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) )  | 
						
| 10 | 8 9 | mpbid | |- ( ph -> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) )  | 
						
| 11 | 10 | simp2d | |- ( ph -> B =/= C )  |