Metamath Proof Explorer


Theorem hlnvi

Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hlnvi.1
|- U e. CHilOLD
Assertion hlnvi
|- U e. NrmCVec

Proof

Step Hyp Ref Expression
1 hlnvi.1
 |-  U e. CHilOLD
2 hlnv
 |-  ( U e. CHilOLD -> U e. NrmCVec )
3 1 2 ax-mp
 |-  U e. NrmCVec