Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hlnvi.1 | |- U e. CHilOLD |
|
Assertion | hlnvi | |- U e. NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnvi.1 | |- U e. CHilOLD |
|
2 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) |
|
3 | 1 2 | ax-mp | |- U e. NrmCVec |