Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
2 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
3 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
4 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
5 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
6 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
8 |
1 2 3 4 5 6 7
|
ishlat1 |
|- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. ( Atoms ` K ) A. y e. ( Atoms ` K ) ( x =/= y -> E. z e. ( Atoms ` K ) ( z =/= x /\ z =/= y /\ z ( le ` K ) ( x ( join ` K ) y ) ) ) /\ E. x e. ( Base ` K ) E. y e. ( Base ` K ) E. z e. ( Base ` K ) ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) ) |
9 |
8
|
simplbi |
|- ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) ) |