Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlpar.1 | |- X = ( BaseSet ` U ) | |
| hlpar.2 | |- G = ( +v ` U ) | ||
| hlpar.4 | |- S = ( .sOLD ` U ) | ||
| hlpar.6 | |- N = ( normCV ` U ) | ||
| Assertion | hlpar | |- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlpar.1 | |- X = ( BaseSet ` U ) | |
| 2 | hlpar.2 | |- G = ( +v ` U ) | |
| 3 | hlpar.4 | |- S = ( .sOLD ` U ) | |
| 4 | hlpar.6 | |- N = ( normCV ` U ) | |
| 5 | hlph | |- ( U e. CHilOLD -> U e. CPreHilOLD ) | |
| 6 | 1 2 3 4 | phpar | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) | 
| 7 | 5 6 | syl3an1 | |- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |