Metamath Proof Explorer


Theorem hlpar2

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar2.1
|- X = ( BaseSet ` U )
hlpar2.2
|- G = ( +v ` U )
hlpar2.3
|- M = ( -v ` U )
hlpar2.6
|- N = ( normCV ` U )
Assertion hlpar2
|- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 hlpar2.1
 |-  X = ( BaseSet ` U )
2 hlpar2.2
 |-  G = ( +v ` U )
3 hlpar2.3
 |-  M = ( -v ` U )
4 hlpar2.6
 |-  N = ( normCV ` U )
5 hlph
 |-  ( U e. CHilOLD -> U e. CPreHilOLD )
6 1 2 3 4 phpar2
 |-  ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )
7 5 6 syl3an1
 |-  ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )