Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlph | |- ( U e. CHilOLD -> U e. CPreHilOLD ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishlo | |- ( U e. CHilOLD <-> ( U e. CBan /\ U e. CPreHilOLD ) ) | |
| 2 | 1 | simprbi | |- ( U e. CHilOLD -> U e. CPreHilOLD ) |