Step |
Hyp |
Ref |
Expression |
1 |
|
hlress.f |
|- F = ( Scalar ` W ) |
2 |
|
hlress.k |
|- K = ( Base ` F ) |
3 |
|
hlcph |
|- ( W e. CHil -> W e. CPreHil ) |
4 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
5 |
3 4
|
syl |
|- ( W e. CHil -> K e. ( SubRing ` CCfld ) ) |
6 |
1 2
|
cphsca |
|- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
7 |
3 6
|
syl |
|- ( W e. CHil -> F = ( CCfld |`s K ) ) |
8 |
|
cphlvec |
|- ( W e. CPreHil -> W e. LVec ) |
9 |
1
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
10 |
3 8 9
|
3syl |
|- ( W e. CHil -> F e. DivRing ) |
11 |
7 10
|
eqeltrrd |
|- ( W e. CHil -> ( CCfld |`s K ) e. DivRing ) |
12 |
|
hlbn |
|- ( W e. CHil -> W e. Ban ) |
13 |
1
|
bnsca |
|- ( W e. Ban -> F e. CMetSp ) |
14 |
12 13
|
syl |
|- ( W e. CHil -> F e. CMetSp ) |
15 |
7 14
|
eqeltrrd |
|- ( W e. CHil -> ( CCfld |`s K ) e. CMetSp ) |
16 |
5 11 15
|
3jca |
|- ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) |