Metamath Proof Explorer


Theorem hlrelat1

Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.) (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses hlrelat1.b
|- B = ( Base ` K )
hlrelat1.l
|- .<_ = ( le ` K )
hlrelat1.s
|- .< = ( lt ` K )
hlrelat1.a
|- A = ( Atoms ` K )
Assertion hlrelat1
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .< Y -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) )

Proof

Step Hyp Ref Expression
1 hlrelat1.b
 |-  B = ( Base ` K )
2 hlrelat1.l
 |-  .<_ = ( le ` K )
3 hlrelat1.s
 |-  .< = ( lt ` K )
4 hlrelat1.a
 |-  A = ( Atoms ` K )
5 hlomcmat
 |-  ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. AtLat ) )
6 1 2 3 4 atlrelat1
 |-  ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ X e. B /\ Y e. B ) -> ( X .< Y -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) )
7 5 6 syl3an1
 |-  ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .< Y -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) )