Step |
Hyp |
Ref |
Expression |
1 |
|
hlrelat5.b |
|- B = ( Base ` K ) |
2 |
|
hlrelat5.l |
|- .<_ = ( le ` K ) |
3 |
|
hlrelat5.s |
|- .< = ( lt ` K ) |
4 |
|
hlrelat5.j |
|- .\/ = ( join ` K ) |
5 |
|
hlrelat5.a |
|- A = ( Atoms ` K ) |
6 |
1 2 3 5
|
hlrelat1 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .< Y -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) |
7 |
6
|
imp |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) |
8 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
9 |
|
id |
|- ( X e. B -> X e. B ) |
10 |
1 5
|
atbase |
|- ( p e. A -> p e. B ) |
11 |
|
ovexd |
|- ( p e. B -> ( X .\/ p ) e. _V ) |
12 |
2 3
|
pltval |
|- ( ( K e. Lat /\ X e. B /\ ( X .\/ p ) e. _V ) -> ( X .< ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) |
13 |
11 12
|
syl3an3 |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) |
14 |
1 2 4
|
latlej1 |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> X .<_ ( X .\/ p ) ) |
15 |
14
|
biantrurd |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X =/= ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) |
16 |
13 15
|
bitr4d |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> X =/= ( X .\/ p ) ) ) |
17 |
1 2 4
|
latleeqj1 |
|- ( ( K e. Lat /\ p e. B /\ X e. B ) -> ( p .<_ X <-> ( p .\/ X ) = X ) ) |
18 |
17
|
3com23 |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( p .<_ X <-> ( p .\/ X ) = X ) ) |
19 |
1 4
|
latjcom |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .\/ p ) = ( p .\/ X ) ) |
20 |
19
|
eqeq1d |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( ( X .\/ p ) = X <-> ( p .\/ X ) = X ) ) |
21 |
18 20
|
bitr4d |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( p .<_ X <-> ( X .\/ p ) = X ) ) |
22 |
21
|
notbid |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( -. p .<_ X <-> -. ( X .\/ p ) = X ) ) |
23 |
|
nesym |
|- ( X =/= ( X .\/ p ) <-> -. ( X .\/ p ) = X ) |
24 |
22 23
|
bitr4di |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( -. p .<_ X <-> X =/= ( X .\/ p ) ) ) |
25 |
16 24
|
bitr4d |
|- ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) |
26 |
8 9 10 25
|
syl3an |
|- ( ( K e. HL /\ X e. B /\ p e. A ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) |
27 |
26
|
3expa |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) |
28 |
27
|
anbi1d |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> ( -. p .<_ X /\ p .<_ Y ) ) ) |
29 |
28
|
rexbidva |
|- ( ( K e. HL /\ X e. B ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) |
30 |
29
|
3adant3 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) |
31 |
30
|
adantr |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) |
32 |
7 31
|
mpbird |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) ) |