Description: The scalar field of a subcomplex Hilbert space contains RR . (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlress.f | |- F = ( Scalar ` W ) |
|
hlress.k | |- K = ( Base ` F ) |
||
Assertion | hlress | |- ( W e. CHil -> RR C_ K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlress.f | |- F = ( Scalar ` W ) |
|
2 | hlress.k | |- K = ( Base ` F ) |
|
3 | 1 2 | hlprlem | |- ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) |
4 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
5 | 4 | resscdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) -> RR C_ K ) |
6 | 3 5 | syl | |- ( W e. CHil -> RR C_ K ) |