Description: A Hilbert lattice has the superposition property. Theorem 13.2 in Crawley p. 107. (Contributed by NM, 30-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlsupr.l | |- .<_ = ( le ` K ) |
|
hlsupr.j | |- .\/ = ( join ` K ) |
||
hlsupr.a | |- A = ( Atoms ` K ) |
||
Assertion | hlsupr | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlsupr.l | |- .<_ = ( le ` K ) |
|
2 | hlsupr.j | |- .\/ = ( join ` K ) |
|
3 | hlsupr.a | |- A = ( Atoms ` K ) |
|
4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
5 | 4 1 2 3 | hlsuprexch | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P =/= Q -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) /\ A. r e. ( Base ` K ) ( ( -. P .<_ r /\ P .<_ ( r .\/ Q ) ) -> Q .<_ ( r .\/ P ) ) ) ) |
6 | 5 | simpld | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) ) |
7 | 6 | imp | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) |