Metamath Proof Explorer


Theorem hlsupr

Description: A Hilbert lattice has the superposition property. Theorem 13.2 in Crawley p. 107. (Contributed by NM, 30-Jan-2012)

Ref Expression
Hypotheses hlsupr.l
|- .<_ = ( le ` K )
hlsupr.j
|- .\/ = ( join ` K )
hlsupr.a
|- A = ( Atoms ` K )
Assertion hlsupr
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) )

Proof

Step Hyp Ref Expression
1 hlsupr.l
 |-  .<_ = ( le ` K )
2 hlsupr.j
 |-  .\/ = ( join ` K )
3 hlsupr.a
 |-  A = ( Atoms ` K )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 1 2 3 hlsuprexch
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P =/= Q -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) /\ A. r e. ( Base ` K ) ( ( -. P .<_ r /\ P .<_ ( r .\/ Q ) ) -> Q .<_ ( r .\/ P ) ) ) )
6 5 simpld
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) ) )
7 6 imp
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> E. r e. A ( r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) ) )