Step |
Hyp |
Ref |
Expression |
1 |
|
hlsuprexch.b |
|- B = ( Base ` K ) |
2 |
|
hlsuprexch.l |
|- .<_ = ( le ` K ) |
3 |
|
hlsuprexch.j |
|- .\/ = ( join ` K ) |
4 |
|
hlsuprexch.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
6 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
7 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
8 |
1 2 5 3 6 7 4
|
ishlat2 |
|- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) ) |
9 |
|
simprl |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) -> A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) ) |
10 |
8 9
|
sylbi |
|- ( K e. HL -> A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) ) |
11 |
|
neeq1 |
|- ( x = P -> ( x =/= y <-> P =/= y ) ) |
12 |
|
neeq2 |
|- ( x = P -> ( z =/= x <-> z =/= P ) ) |
13 |
|
oveq1 |
|- ( x = P -> ( x .\/ y ) = ( P .\/ y ) ) |
14 |
13
|
breq2d |
|- ( x = P -> ( z .<_ ( x .\/ y ) <-> z .<_ ( P .\/ y ) ) ) |
15 |
12 14
|
3anbi13d |
|- ( x = P -> ( ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) <-> ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) |
16 |
15
|
rexbidv |
|- ( x = P -> ( E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) <-> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) |
17 |
11 16
|
imbi12d |
|- ( x = P -> ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) <-> ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) ) |
18 |
|
breq1 |
|- ( x = P -> ( x .<_ z <-> P .<_ z ) ) |
19 |
18
|
notbid |
|- ( x = P -> ( -. x .<_ z <-> -. P .<_ z ) ) |
20 |
|
breq1 |
|- ( x = P -> ( x .<_ ( z .\/ y ) <-> P .<_ ( z .\/ y ) ) ) |
21 |
19 20
|
anbi12d |
|- ( x = P -> ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) <-> ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) ) ) |
22 |
|
oveq2 |
|- ( x = P -> ( z .\/ x ) = ( z .\/ P ) ) |
23 |
22
|
breq2d |
|- ( x = P -> ( y .<_ ( z .\/ x ) <-> y .<_ ( z .\/ P ) ) ) |
24 |
21 23
|
imbi12d |
|- ( x = P -> ( ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) <-> ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) |
25 |
24
|
ralbidv |
|- ( x = P -> ( A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) <-> A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) |
26 |
17 25
|
anbi12d |
|- ( x = P -> ( ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) <-> ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) ) |
27 |
|
neeq2 |
|- ( y = Q -> ( P =/= y <-> P =/= Q ) ) |
28 |
|
neeq2 |
|- ( y = Q -> ( z =/= y <-> z =/= Q ) ) |
29 |
|
oveq2 |
|- ( y = Q -> ( P .\/ y ) = ( P .\/ Q ) ) |
30 |
29
|
breq2d |
|- ( y = Q -> ( z .<_ ( P .\/ y ) <-> z .<_ ( P .\/ Q ) ) ) |
31 |
28 30
|
3anbi23d |
|- ( y = Q -> ( ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) <-> ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) |
32 |
31
|
rexbidv |
|- ( y = Q -> ( E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) <-> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) |
33 |
27 32
|
imbi12d |
|- ( y = Q -> ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) <-> ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) ) |
34 |
|
oveq2 |
|- ( y = Q -> ( z .\/ y ) = ( z .\/ Q ) ) |
35 |
34
|
breq2d |
|- ( y = Q -> ( P .<_ ( z .\/ y ) <-> P .<_ ( z .\/ Q ) ) ) |
36 |
35
|
anbi2d |
|- ( y = Q -> ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) <-> ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) ) ) |
37 |
|
breq1 |
|- ( y = Q -> ( y .<_ ( z .\/ P ) <-> Q .<_ ( z .\/ P ) ) ) |
38 |
36 37
|
imbi12d |
|- ( y = Q -> ( ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) <-> ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
39 |
38
|
ralbidv |
|- ( y = Q -> ( A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) <-> A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
40 |
33 39
|
anbi12d |
|- ( y = Q -> ( ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) <-> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) ) |
41 |
26 40
|
rspc2v |
|- ( ( P e. A /\ Q e. A ) -> ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) ) |
42 |
10 41
|
mpan9 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
43 |
42
|
3impb |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |