Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
8 |
|
hltr.d |
|- ( ph -> D e. P ) |
9 |
|
hltr.1 |
|- ( ph -> A ( K ` D ) B ) |
10 |
|
hltr.2 |
|- ( ph -> B ( K ` D ) C ) |
11 |
1 2 3 4 5 8 7 9
|
hlne1 |
|- ( ph -> A =/= D ) |
12 |
1 2 3 5 6 8 7 10
|
hlne2 |
|- ( ph -> C =/= D ) |
13 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
14 |
7
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> G e. TarskiG ) |
15 |
8
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> D e. P ) |
16 |
4
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. P ) |
17 |
5
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> B e. P ) |
18 |
6
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> C e. P ) |
19 |
|
simplr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. ( D I B ) ) |
20 |
|
simpr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> B e. ( D I C ) ) |
21 |
1 13 2 14 15 16 17 18 19 20
|
tgbtwnexch |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. ( D I C ) ) |
22 |
21
|
orcd |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
23 |
7
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> G e. TarskiG ) |
24 |
8
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> D e. P ) |
25 |
4
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> A e. P ) |
26 |
6
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> C e. P ) |
27 |
5
|
ad2antrr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> B e. P ) |
28 |
|
simplr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> A e. ( D I B ) ) |
29 |
|
simpr |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> C e. ( D I B ) ) |
30 |
1 2 23 24 25 26 27 28 29
|
tgbtwnconn3 |
|- ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
31 |
1 2 3 5 6 8 7
|
ishlg |
|- ( ph -> ( B ( K ` D ) C <-> ( B =/= D /\ C =/= D /\ ( B e. ( D I C ) \/ C e. ( D I B ) ) ) ) ) |
32 |
10 31
|
mpbid |
|- ( ph -> ( B =/= D /\ C =/= D /\ ( B e. ( D I C ) \/ C e. ( D I B ) ) ) ) |
33 |
32
|
simp3d |
|- ( ph -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) |
35 |
22 30 34
|
mpjaodan |
|- ( ( ph /\ A e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
36 |
7
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> G e. TarskiG ) |
37 |
8
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> D e. P ) |
38 |
5
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. P ) |
39 |
4
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> A e. P ) |
40 |
6
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> C e. P ) |
41 |
32
|
simp1d |
|- ( ph -> B =/= D ) |
42 |
41
|
necomd |
|- ( ph -> D =/= B ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> D =/= B ) |
44 |
|
simplr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. ( D I A ) ) |
45 |
|
simpr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. ( D I C ) ) |
46 |
1 2 36 37 38 39 40 43 44 45
|
tgbtwnconn1 |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
47 |
7
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> G e. TarskiG ) |
48 |
8
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> D e. P ) |
49 |
6
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. P ) |
50 |
5
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> B e. P ) |
51 |
4
|
ad2antrr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> A e. P ) |
52 |
|
simpr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. ( D I B ) ) |
53 |
|
simplr |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> B e. ( D I A ) ) |
54 |
1 13 2 47 48 49 50 51 52 53
|
tgbtwnexch |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. ( D I A ) ) |
55 |
54
|
olcd |
|- ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
56 |
33
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) |
57 |
46 55 56
|
mpjaodan |
|- ( ( ph /\ B e. ( D I A ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
58 |
1 2 3 4 5 8 7
|
ishlg |
|- ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) ) |
59 |
9 58
|
mpbid |
|- ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) |
60 |
59
|
simp3d |
|- ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) ) |
61 |
35 57 60
|
mpjaodan |
|- ( ph -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) |
62 |
1 2 3 4 6 8 7
|
ishlg |
|- ( ph -> ( A ( K ` D ) C <-> ( A =/= D /\ C =/= D /\ ( A e. ( D I C ) \/ C e. ( D I A ) ) ) ) ) |
63 |
11 12 61 62
|
mpbir3and |
|- ( ph -> A ( K ` D ) C ) |