Description: Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hlvc.1 | |- W = ( 1st ` U ) |
|
Assertion | hlvc | |- ( U e. CHilOLD -> W e. CVecOLD ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlvc.1 | |- W = ( 1st ` U ) |
|
2 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) |
|
3 | 1 | nvvc | |- ( U e. NrmCVec -> W e. CVecOLD ) |
4 | 2 3 | syl | |- ( U e. CHilOLD -> W e. CVecOLD ) |