Description: Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlvc.1 | |- W = ( 1st ` U ) | |
| Assertion | hlvc | |- ( U e. CHilOLD -> W e. CVecOLD ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlvc.1 | |- W = ( 1st ` U ) | |
| 2 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) | |
| 3 | 1 | nvvc | |- ( U e. NrmCVec -> W e. CVecOLD ) | 
| 4 | 2 3 | syl | |- ( U e. CHilOLD -> W e. CVecOLD ) |