Description: Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmdmadj | |- ( T e. HrmOp -> T e. dom adjh ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | |- ( T e. HrmOp -> T : ~H --> ~H ) |
|
| 2 | hon0 | |- ( T : ~H --> ~H -> -. T = (/) ) |
|
| 3 | 1 2 | syl | |- ( T e. HrmOp -> -. T = (/) ) |
| 4 | hmopadj | |- ( T e. HrmOp -> ( adjh ` T ) = T ) |
|
| 5 | 4 | eqeq1d | |- ( T e. HrmOp -> ( ( adjh ` T ) = (/) <-> T = (/) ) ) |
| 6 | 3 5 | mtbird | |- ( T e. HrmOp -> -. ( adjh ` T ) = (/) ) |
| 7 | ndmfv | |- ( -. T e. dom adjh -> ( adjh ` T ) = (/) ) |
|
| 8 | 6 7 | nsyl2 | |- ( T e. HrmOp -> T e. dom adjh ) |