Description: Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmdmadj | |- ( T e. HrmOp -> T e. dom adjh ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopf | |- ( T e. HrmOp -> T : ~H --> ~H ) |
|
2 | hon0 | |- ( T : ~H --> ~H -> -. T = (/) ) |
|
3 | 1 2 | syl | |- ( T e. HrmOp -> -. T = (/) ) |
4 | hmopadj | |- ( T e. HrmOp -> ( adjh ` T ) = T ) |
|
5 | 4 | eqeq1d | |- ( T e. HrmOp -> ( ( adjh ` T ) = (/) <-> T = (/) ) ) |
6 | 3 5 | mtbird | |- ( T e. HrmOp -> -. ( adjh ` T ) = (/) ) |
7 | ndmfv | |- ( -. T e. dom adjh -> ( adjh ` T ) = (/) ) |
|
8 | 6 7 | nsyl2 | |- ( T e. HrmOp -> T e. dom adjh ) |