Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
|- X = U. J |
2 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
3 |
2
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> `' F e. ( K Cn J ) ) |
4 |
|
imacnvcnv |
|- ( `' `' F " A ) = ( F " A ) |
5 |
|
cnclima |
|- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( `' `' F " A ) e. ( Clsd ` K ) ) |
6 |
4 5
|
eqeltrrid |
|- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( F " A ) e. ( Clsd ` K ) ) |
7 |
6
|
ex |
|- ( `' F e. ( K Cn J ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
8 |
3 7
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
9 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
10 |
9
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) |
11 |
|
cnclima |
|- ( ( F e. ( J Cn K ) /\ ( F " A ) e. ( Clsd ` K ) ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) |
12 |
11
|
ex |
|- ( F e. ( J Cn K ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
13 |
10 12
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
14 |
|
eqid |
|- U. K = U. K |
15 |
1 14
|
hmeof1o |
|- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
16 |
|
f1of1 |
|- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
17 |
15 16
|
syl |
|- ( F e. ( J Homeo K ) -> F : X -1-1-> U. K ) |
18 |
|
f1imacnv |
|- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
19 |
17 18
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
20 |
19
|
eleq1d |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( F " A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
21 |
13 20
|
sylibd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> A e. ( Clsd ` J ) ) ) |
22 |
8 21
|
impbid |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( F " A ) e. ( Clsd ` K ) ) ) |