| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeoopn.1 |
|- X = U. J |
| 2 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
| 3 |
2
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> `' F e. ( K Cn J ) ) |
| 4 |
|
imacnvcnv |
|- ( `' `' F " A ) = ( F " A ) |
| 5 |
|
cnclima |
|- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( `' `' F " A ) e. ( Clsd ` K ) ) |
| 6 |
4 5
|
eqeltrrid |
|- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( F " A ) e. ( Clsd ` K ) ) |
| 7 |
6
|
ex |
|- ( `' F e. ( K Cn J ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
| 8 |
3 7
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
| 9 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
| 10 |
9
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) |
| 11 |
|
cnclima |
|- ( ( F e. ( J Cn K ) /\ ( F " A ) e. ( Clsd ` K ) ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) |
| 12 |
11
|
ex |
|- ( F e. ( J Cn K ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
| 13 |
10 12
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
| 14 |
|
eqid |
|- U. K = U. K |
| 15 |
1 14
|
hmeof1o |
|- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
| 16 |
|
f1of1 |
|- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
| 17 |
15 16
|
syl |
|- ( F e. ( J Homeo K ) -> F : X -1-1-> U. K ) |
| 18 |
|
f1imacnv |
|- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
| 19 |
17 18
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
| 20 |
19
|
eleq1d |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( F " A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
| 21 |
13 20
|
sylibd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> A e. ( Clsd ` J ) ) ) |
| 22 |
8 21
|
impbid |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( F " A ) e. ( Clsd ` K ) ) ) |