| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeoopn.1 |  |-  X = U. J | 
						
							| 2 |  | hmeocnvcn |  |-  ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) | 
						
							| 3 | 1 | cncls2i |  |-  ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) | 
						
							| 5 |  | imacnvcnv |  |-  ( `' `' F " A ) = ( F " A ) | 
						
							| 6 | 5 | fveq2i |  |-  ( ( cls ` K ) ` ( `' `' F " A ) ) = ( ( cls ` K ) ` ( F " A ) ) | 
						
							| 7 |  | imacnvcnv |  |-  ( `' `' F " ( ( cls ` J ) ` A ) ) = ( F " ( ( cls ` J ) ` A ) ) | 
						
							| 8 | 4 6 7 | 3sstr3g |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) C_ ( F " ( ( cls ` J ) ` A ) ) ) | 
						
							| 9 |  | hmeocn |  |-  ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) | 
						
							| 10 | 1 | cnclsi |  |-  ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) | 
						
							| 12 | 8 11 | eqssd |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) = ( F " ( ( cls ` J ) ` A ) ) ) |