Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
|- X = U. J |
2 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
3 |
1
|
cncls2i |
|- ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
4 |
2 3
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
5 |
|
imacnvcnv |
|- ( `' `' F " A ) = ( F " A ) |
6 |
5
|
fveq2i |
|- ( ( cls ` K ) ` ( `' `' F " A ) ) = ( ( cls ` K ) ` ( F " A ) ) |
7 |
|
imacnvcnv |
|- ( `' `' F " ( ( cls ` J ) ` A ) ) = ( F " ( ( cls ` J ) ` A ) ) |
8 |
4 6 7
|
3sstr3g |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) C_ ( F " ( ( cls ` J ) ` A ) ) ) |
9 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
10 |
1
|
cnclsi |
|- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
11 |
9 10
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
12 |
8 11
|
eqssd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) = ( F " ( ( cls ` J ) ` A ) ) ) |