| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
| 2 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
| 3 |
|
eqid |
|- U. J = U. J |
| 4 |
|
eqid |
|- U. K = U. K |
| 5 |
3 4
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 6 |
|
frel |
|- ( F : U. J --> U. K -> Rel F ) |
| 7 |
2 5 6
|
3syl |
|- ( F e. ( J Homeo K ) -> Rel F ) |
| 8 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 9 |
7 8
|
sylib |
|- ( F e. ( J Homeo K ) -> `' `' F = F ) |
| 10 |
9 2
|
eqeltrd |
|- ( F e. ( J Homeo K ) -> `' `' F e. ( J Cn K ) ) |
| 11 |
|
ishmeo |
|- ( `' F e. ( K Homeo J ) <-> ( `' F e. ( K Cn J ) /\ `' `' F e. ( J Cn K ) ) ) |
| 12 |
1 10 11
|
sylanbrc |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Homeo J ) ) |