Step |
Hyp |
Ref |
Expression |
1 |
|
hmeocnv |
|- ( `' F e. ( J Homeo K ) -> `' `' F e. ( K Homeo J ) ) |
2 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
3 |
|
eleq1 |
|- ( `' `' F = F -> ( `' `' F e. ( K Homeo J ) <-> F e. ( K Homeo J ) ) ) |
4 |
2 3
|
sylbi |
|- ( Rel F -> ( `' `' F e. ( K Homeo J ) <-> F e. ( K Homeo J ) ) ) |
5 |
1 4
|
syl5ib |
|- ( Rel F -> ( `' F e. ( J Homeo K ) -> F e. ( K Homeo J ) ) ) |
6 |
|
hmeocnv |
|- ( F e. ( K Homeo J ) -> `' F e. ( J Homeo K ) ) |
7 |
5 6
|
impbid1 |
|- ( Rel F -> ( `' F e. ( J Homeo K ) <-> F e. ( K Homeo J ) ) ) |