Metamath Proof Explorer


Theorem hmeofn

Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmeofn
|- Homeo Fn ( Top X. Top )

Proof

Step Hyp Ref Expression
1 df-hmeo
 |-  Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } )
2 ovex
 |-  ( j Cn k ) e. _V
3 2 rabex
 |-  { f e. ( j Cn k ) | `' f e. ( k Cn j ) } e. _V
4 1 3 fnmpoi
 |-  Homeo Fn ( Top X. Top )