Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
|- ( ( j = J /\ k = K ) -> ( j Cn k ) = ( J Cn K ) ) |
2 |
|
oveq12 |
|- ( ( k = K /\ j = J ) -> ( k Cn j ) = ( K Cn J ) ) |
3 |
2
|
ancoms |
|- ( ( j = J /\ k = K ) -> ( k Cn j ) = ( K Cn J ) ) |
4 |
3
|
eleq2d |
|- ( ( j = J /\ k = K ) -> ( `' f e. ( k Cn j ) <-> `' f e. ( K Cn J ) ) ) |
5 |
1 4
|
rabeqbidv |
|- ( ( j = J /\ k = K ) -> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
6 |
|
df-hmeo |
|- Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } ) |
7 |
|
ovex |
|- ( J Cn K ) e. _V |
8 |
7
|
rabex |
|- { f e. ( J Cn K ) | `' f e. ( K Cn J ) } e. _V |
9 |
5 6 8
|
ovmpoa |
|- ( ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
10 |
6
|
mpondm0 |
|- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = (/) ) |
11 |
|
cntop1 |
|- ( f e. ( J Cn K ) -> J e. Top ) |
12 |
|
cntop2 |
|- ( f e. ( J Cn K ) -> K e. Top ) |
13 |
11 12
|
jca |
|- ( f e. ( J Cn K ) -> ( J e. Top /\ K e. Top ) ) |
14 |
13
|
a1d |
|- ( f e. ( J Cn K ) -> ( `' f e. ( K Cn J ) -> ( J e. Top /\ K e. Top ) ) ) |
15 |
14
|
con3rr3 |
|- ( -. ( J e. Top /\ K e. Top ) -> ( f e. ( J Cn K ) -> -. `' f e. ( K Cn J ) ) ) |
16 |
15
|
ralrimiv |
|- ( -. ( J e. Top /\ K e. Top ) -> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
17 |
|
rabeq0 |
|- ( { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) <-> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
18 |
16 17
|
sylibr |
|- ( -. ( J e. Top /\ K e. Top ) -> { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) ) |
19 |
10 18
|
eqtr4d |
|- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
20 |
9 19
|
pm2.61i |
|- ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } |