| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq12 |
|- ( ( j = J /\ k = K ) -> ( j Cn k ) = ( J Cn K ) ) |
| 2 |
|
oveq12 |
|- ( ( k = K /\ j = J ) -> ( k Cn j ) = ( K Cn J ) ) |
| 3 |
2
|
ancoms |
|- ( ( j = J /\ k = K ) -> ( k Cn j ) = ( K Cn J ) ) |
| 4 |
3
|
eleq2d |
|- ( ( j = J /\ k = K ) -> ( `' f e. ( k Cn j ) <-> `' f e. ( K Cn J ) ) ) |
| 5 |
1 4
|
rabeqbidv |
|- ( ( j = J /\ k = K ) -> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 6 |
|
df-hmeo |
|- Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } ) |
| 7 |
|
ovex |
|- ( J Cn K ) e. _V |
| 8 |
7
|
rabex |
|- { f e. ( J Cn K ) | `' f e. ( K Cn J ) } e. _V |
| 9 |
5 6 8
|
ovmpoa |
|- ( ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 10 |
6
|
mpondm0 |
|- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = (/) ) |
| 11 |
|
cntop1 |
|- ( f e. ( J Cn K ) -> J e. Top ) |
| 12 |
|
cntop2 |
|- ( f e. ( J Cn K ) -> K e. Top ) |
| 13 |
11 12
|
jca |
|- ( f e. ( J Cn K ) -> ( J e. Top /\ K e. Top ) ) |
| 14 |
13
|
a1d |
|- ( f e. ( J Cn K ) -> ( `' f e. ( K Cn J ) -> ( J e. Top /\ K e. Top ) ) ) |
| 15 |
14
|
con3rr3 |
|- ( -. ( J e. Top /\ K e. Top ) -> ( f e. ( J Cn K ) -> -. `' f e. ( K Cn J ) ) ) |
| 16 |
15
|
ralrimiv |
|- ( -. ( J e. Top /\ K e. Top ) -> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
| 17 |
|
rabeq0 |
|- ( { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) <-> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
| 18 |
16 17
|
sylibr |
|- ( -. ( J e. Top /\ K e. Top ) -> { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) ) |
| 19 |
10 18
|
eqtr4d |
|- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 20 |
9 19
|
pm2.61i |
|- ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } |