Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hmeoima | |- ( ( F e. ( J Homeo K ) /\ A e. J ) -> ( F " A ) e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
2 | imacnvcnv | |- ( `' `' F " A ) = ( F " A ) |
|
3 | cnima | |- ( ( `' F e. ( K Cn J ) /\ A e. J ) -> ( `' `' F " A ) e. K ) |
|
4 | 2 3 | eqeltrrid | |- ( ( `' F e. ( K Cn J ) /\ A e. J ) -> ( F " A ) e. K ) |
5 | 1 4 | sylan | |- ( ( F e. ( J Homeo K ) /\ A e. J ) -> ( F " A ) e. K ) |