Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
|- X = U. J |
2 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
3 |
2
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) |
4 |
|
imassrn |
|- ( F " A ) C_ ran F |
5 |
|
eqid |
|- U. K = U. K |
6 |
1 5
|
hmeof1o |
|- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
7 |
6
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-onto-> U. K ) |
8 |
|
f1ofo |
|- ( F : X -1-1-onto-> U. K -> F : X -onto-> U. K ) |
9 |
|
forn |
|- ( F : X -onto-> U. K -> ran F = U. K ) |
10 |
7 8 9
|
3syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ran F = U. K ) |
11 |
4 10
|
sseqtrid |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " A ) C_ U. K ) |
12 |
5
|
cnntri |
|- ( ( F e. ( J Cn K ) /\ ( F " A ) C_ U. K ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) |
13 |
3 11 12
|
syl2anc |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) |
14 |
|
f1of1 |
|- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
15 |
7 14
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-> U. K ) |
16 |
|
f1imacnv |
|- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
17 |
15 16
|
sylancom |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
18 |
17
|
fveq2d |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` J ) ` ( `' F " ( F " A ) ) ) = ( ( int ` J ) ` A ) ) |
19 |
13 18
|
sseqtrd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) ) |
20 |
|
f1ofun |
|- ( F : X -1-1-onto-> U. K -> Fun F ) |
21 |
7 20
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> Fun F ) |
22 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
23 |
3 22
|
syl |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> K e. Top ) |
24 |
5
|
ntrss3 |
|- ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) |
25 |
23 11 24
|
syl2anc |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) |
26 |
25 10
|
sseqtrrd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ran F ) |
27 |
|
funimass1 |
|- ( ( Fun F /\ ( ( int ` K ) ` ( F " A ) ) C_ ran F ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) |
28 |
21 26 27
|
syl2anc |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) |
29 |
19 28
|
mpd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) |
30 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
31 |
1
|
cnntri |
|- ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) |
32 |
30 31
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) |
33 |
|
imacnvcnv |
|- ( `' `' F " ( ( int ` J ) ` A ) ) = ( F " ( ( int ` J ) ` A ) ) |
34 |
|
imacnvcnv |
|- ( `' `' F " A ) = ( F " A ) |
35 |
34
|
fveq2i |
|- ( ( int ` K ) ` ( `' `' F " A ) ) = ( ( int ` K ) ` ( F " A ) ) |
36 |
32 33 35
|
3sstr3g |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( F " A ) ) ) |
37 |
29 36
|
eqssd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) = ( F " ( ( int ` J ) ` A ) ) ) |