| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeoopn.1 |  |-  X = U. J | 
						
							| 2 |  | hmeocn |  |-  ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) | 
						
							| 4 |  | imassrn |  |-  ( F " A ) C_ ran F | 
						
							| 5 |  | eqid |  |-  U. K = U. K | 
						
							| 6 | 1 5 | hmeof1o |  |-  ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-onto-> U. K ) | 
						
							| 8 |  | f1ofo |  |-  ( F : X -1-1-onto-> U. K -> F : X -onto-> U. K ) | 
						
							| 9 |  | forn |  |-  ( F : X -onto-> U. K -> ran F = U. K ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ran F = U. K ) | 
						
							| 11 | 4 10 | sseqtrid |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " A ) C_ U. K ) | 
						
							| 12 | 5 | cnntri |  |-  ( ( F e. ( J Cn K ) /\ ( F " A ) C_ U. K ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) | 
						
							| 13 | 3 11 12 | syl2anc |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` ( `' F " ( F " A ) ) ) ) | 
						
							| 14 |  | f1of1 |  |-  ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) | 
						
							| 15 | 7 14 | syl |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F : X -1-1-> U. K ) | 
						
							| 16 |  | f1imacnv |  |-  ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) | 
						
							| 17 | 15 16 | sylancom |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` J ) ` ( `' F " ( F " A ) ) ) = ( ( int ` J ) ` A ) ) | 
						
							| 19 | 13 18 | sseqtrd |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) ) | 
						
							| 20 |  | f1ofun |  |-  ( F : X -1-1-onto-> U. K -> Fun F ) | 
						
							| 21 | 7 20 | syl |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> Fun F ) | 
						
							| 22 |  | cntop2 |  |-  ( F e. ( J Cn K ) -> K e. Top ) | 
						
							| 23 | 3 22 | syl |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> K e. Top ) | 
						
							| 24 | 5 | ntrss3 |  |-  ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) | 
						
							| 25 | 23 11 24 | syl2anc |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ U. K ) | 
						
							| 26 | 25 10 | sseqtrrd |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ran F ) | 
						
							| 27 |  | funimass1 |  |-  ( ( Fun F /\ ( ( int ` K ) ` ( F " A ) ) C_ ran F ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) | 
						
							| 28 | 21 26 27 | syl2anc |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( ( int ` K ) ` ( F " A ) ) ) C_ ( ( int ` J ) ` A ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) ) | 
						
							| 29 | 19 28 | mpd |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) C_ ( F " ( ( int ` J ) ` A ) ) ) | 
						
							| 30 |  | hmeocnvcn |  |-  ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) | 
						
							| 31 | 1 | cnntri |  |-  ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) | 
						
							| 32 | 30 31 | sylan |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' `' F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( `' `' F " A ) ) ) | 
						
							| 33 |  | imacnvcnv |  |-  ( `' `' F " ( ( int ` J ) ` A ) ) = ( F " ( ( int ` J ) ` A ) ) | 
						
							| 34 |  | imacnvcnv |  |-  ( `' `' F " A ) = ( F " A ) | 
						
							| 35 | 34 | fveq2i |  |-  ( ( int ` K ) ` ( `' `' F " A ) ) = ( ( int ` K ) ` ( F " A ) ) | 
						
							| 36 | 32 33 35 | 3sstr3g |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( int ` J ) ` A ) ) C_ ( ( int ` K ) ` ( F " A ) ) ) | 
						
							| 37 | 29 36 | eqssd |  |-  ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( int ` K ) ` ( F " A ) ) = ( F " ( ( int ` J ) ` A ) ) ) |