Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
|- X = U. J |
2 |
|
hmeoima |
|- ( ( F e. ( J Homeo K ) /\ A e. J ) -> ( F " A ) e. K ) |
3 |
2
|
ex |
|- ( F e. ( J Homeo K ) -> ( A e. J -> ( F " A ) e. K ) ) |
4 |
3
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. J -> ( F " A ) e. K ) ) |
5 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
6 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( F " A ) e. K ) -> ( `' F " ( F " A ) ) e. J ) |
7 |
6
|
ex |
|- ( F e. ( J Cn K ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
8 |
5 7
|
syl |
|- ( F e. ( J Homeo K ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
9 |
8
|
adantr |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. K -> ( `' F " ( F " A ) ) e. J ) ) |
10 |
|
eqid |
|- U. K = U. K |
11 |
1 10
|
hmeof1o |
|- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
12 |
|
f1of1 |
|- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
13 |
11 12
|
syl |
|- ( F e. ( J Homeo K ) -> F : X -1-1-> U. K ) |
14 |
|
f1imacnv |
|- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
15 |
13 14
|
sylan |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
16 |
15
|
eleq1d |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( F " A ) ) e. J <-> A e. J ) ) |
17 |
9 16
|
sylibd |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. K -> A e. J ) ) |
18 |
4 17
|
impbid |
|- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. J <-> ( F " A ) e. K ) ) |