| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmopadj |
|- ( T e. HrmOp -> ( adjh ` T ) = T ) |
| 2 |
|
dmadjop |
|- ( T e. dom adjh -> T : ~H --> ~H ) |
| 3 |
2
|
adantr |
|- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> T : ~H --> ~H ) |
| 4 |
|
adj1 |
|- ( ( T e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 5 |
4
|
3expb |
|- ( ( T e. dom adjh /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 6 |
5
|
adantlr |
|- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 7 |
|
fveq1 |
|- ( ( adjh ` T ) = T -> ( ( adjh ` T ) ` x ) = ( T ` x ) ) |
| 8 |
7
|
oveq1d |
|- ( ( adjh ` T ) = T -> ( ( ( adjh ` T ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 9 |
8
|
ad2antlr |
|- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( ( adjh ` T ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 10 |
6 9
|
eqtrd |
|- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 11 |
10
|
ralrimivva |
|- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 12 |
|
elhmop |
|- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 13 |
3 11 12
|
sylanbrc |
|- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> T e. HrmOp ) |
| 14 |
13
|
ex |
|- ( T e. dom adjh -> ( ( adjh ` T ) = T -> T e. HrmOp ) ) |
| 15 |
1 14
|
impbid2 |
|- ( T e. dom adjh -> ( T e. HrmOp <-> ( adjh ` T ) = T ) ) |